CHAPITRE III Espaces vectoriels

2017-2018

A) Préalables (compléments) : Groupes, Sous-Groupes, Anneaux, Corps

0) LOIS DE COMPOSITION INTERNE (LCI)

<u>**Définition**</u>: Une Loi de Composition Interne (LCI) sur un ensemble E est une application de $E \times E$ dans E.

Ainsi, à tout couple (a, b) d'éléments de E, on associe un unique élément c = a * b de E.

Propriétés possibles :

* Commutativité : une LCI * est commutative si :

$$\forall (a,b) \in E^2, a*b = b*a.$$

* Associativité : une LCI * est associative si :

$$\forall (a, b, c) \in E^3, a * (b * c) = (a * b) * c.$$

* Elément neutre : un élément e de E est élément neutre pour la loi * si :

$$\forall a \in E, a * e = e * a = a.$$

* Elément symétrisable : un élément a de E est symétrisable (ou inversible) pour la loi * si :

$$\exists b \in E, \ a * b = b * a = e : \text{on note alors } b = a^{-1}.$$

<u>Rmq</u> : si * est associative, l'élément neutre est unique et tout élément symétrisable possède un unique symétrique.

I) GROUPES

- 1) Définition : Un **groupe** est un ensemble *E* muni d'une LCI tel que :
- la loi * est associative,
- il existe un élément neutre e pour la loi * dans E,
- tout élément a de E possède dans E un symétrique a^{-1} pour la loi *.

Si de plus, la loi * est commutative, le groupe est dit **abélien** ou **commutatif** ou **additif**. Dans ce cas on remplace souvent le symbole * par +.

- 2) Exemples classiques de groupes :
- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ sont des groupes abéliens.
- (\mathbb{Q}^*,\times) , (\mathbb{R}^*,\times) , (\mathbb{C}^*,\times) sont des groupes abéliens.

- (\mathbb{U}_n, \times) est le groupe des racines $n i \grave{e}mes$ de l'unité.
- (S_n, o) , ensemble des permutations de (1, n) est un groupe non commutatif.
- L'ensemble des éléments inversibles d'un ensemble (E,*) dans lequel la loi * est associative et dont l'élément neutre est e, est un groupe pour la loi *. On le note $Inv_*(E)$.

Par exemple, $Inv_{\times}(\mathbb{Z}) = \{-1, 1\}.$

3) Sous-groupes

<u>Définition</u>: Une partie H d'un groupe (G, *) est un sous-groupe de G si :

- la loi * est interne à H,

c'est-à-dire : $\forall a \in H, \ \forall b \in H, \ a * b \in H$,

- l'élément neutre *e* pour * dans *G* est dans *H*,
- tout élément de H est inversible **dans** H : $\forall a \in H, a^{-1} \in H$.

Rmq : $\{e\}$ et G sont deux sous-groupes de G.

<u>Théorème</u>: Une partie H d'un groupe (G, *) est un sous-groupe du groupe G, d'élément neutre e, ssi:

- H est non vide (on vérifie en général que $e \in H$)
- $\forall (x,y) \in H^2, \ x * y^{-1} \in H.$

Exemples de sous-groupes classiques :

- $\mathbb{U}_n = \{ z \in \mathbb{C}, z^n = 1 \}$ est un sous-groupe de (\mathbb{C}^*, \times) . (dit "cyclique")
- $\mathbb{U} = \{ z \in \mathbb{C}, |z| = 1 \}$ est un sous-groupe de (\mathbb{C}^*, \times) .

<u>Théorème (pour la culture)</u>: Dans un groupe fini, l'ordre d'un sous-groupe (c'est-à-dire son cardinal) divise l'ordre du groupe.

C'est-à-dire : le cardinal de tout sous-groupe d'un groupe G divise le cardinal de ce groupe.

II) ANNEAUX

Définition : Soit *A* un ensemble muni de deux lois de composition interne notées * et *T*.

On dit que (A, *, T) est un **anneau** lorsque :

- (*A*, *) est un groupe abélien d'élément neutre noté 0,
- La loi *T* est associative, possède un élément neutre noté 1,
- La loi *T* est distributive par rapport à la loi *.

Si, de plus, la loi *T* est commutative, l'anneau est dit commutatif.

Exemples:

- $(\mathbb{Z}, +, \times)$ est un anneau commutatif. $(\mathbb{K}[X], +, \times)$ est un anneau commutatif.
- $(\mathbb{R}^{\mathbb{R}}, +, \times)$ est un anneau commutatif. $(\mathbb{R}^{\mathbb{R}}, +, o)$ est un anneau non commutatif.
- $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau non commutatif.

Dans un anneau commutatif, on peut appliquer la formule du binôme de Newton (et toutes les autres identités remarquables).

III) CORPS COMMUTATIFS

Définition : Soit $\mathbb K$ un ensemble muni de deux lois de composition interne notées + et \times .

On dit que (\mathbb{K} , +, \times) est un **corps commutatif** lorsque :

- $(\mathbb{K}, +, \times)$ est un anneau,
- (\mathbb{K}^* , \times) est un groupe abélien de neutre 1.

Exemples : $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$ sont des corps commutatifs.

B) ESPACES VECTORIELS

I) DÉFINITIONS, EXEMPLES, PREMIÈRES PROPRIÉTÉS DE CALCUL

1) Définition

Dans tout le chapitre, K désigne un corps commutatif.

Soit *E* un ensemble muni :

- d'une LCI notée "+"
- d'une LCE(externe) à opérateurs dans \mathbb{K} , notée "." : $(\alpha, x) \in \mathbb{K} \times E \longmapsto \alpha.x$

Définition : axiomes d'espaces vectoriels :

On dit que (E, +, .) est un \mathbb{K} – espace vectoriel ou espace vectoriel sur \mathbb{K} ssi :

- 1) (E, +) est un groupe abélien d'élément neutre 0_E
- 2) Les quatre propriétés suivantes sont vérifiées :
 - (1)
 - (2)
 - (3)
 - (4)

Alors les éléments de l'espace *E* sont appelés des VECTEURS, ceux du corps **K** des SCALAIRES.

L'élément neutre 0_E du groupe (E, +) est appelé le VECTEUR NUL de l'espace.

2) Exemples d'espaces vectoriels

Soit $n \in \mathbb{N}^*$. On rappelle que \mathbb{K}^n est l'ensemble des n- uplets d'éléments de \mathbb{K} :

$$\mathbb{K}^{n} = \left\{ x = (x_{j})_{1 \leq j \leq n} = (x_{1}, x_{2}, ..., x_{n}), \forall j \in \{1, ..., n\}, x_{j} \in \mathbb{K} \right\}$$

On munit cet ensemble:

- d'une opération interne notée "+":

$$\left(x=\left(x_{j}\right)_{1\leqslant j\leqslant n},\ y=\left(y_{j}\right)_{1\leqslant j\leqslant n}\right)\longmapsto s=x+y=\left(s_{j}\right)_{1\leqslant j\leqslant n}\ \text{tels que}\ \forall\ j\in\left\{ 1,...,n\right\} ,\ s_{j}=x_{j}+y_{j}$$

- d'une opération externe à opérateurs dans K notée ".":

$$\left(a, x = \left(x_{j}\right)_{1 \leqslant j \leqslant n}\right) \in \mathbb{K} \times \mathbb{K}^{n} \longmapsto t = a.x = \left(t_{j}\right)_{1 \leqslant j \leqslant n} \text{ tels que } \forall j \in \{1, ..., n\}, \ t_{j} = a \times x_{j}$$

Alors, (\mathbb{K}^n , +, .) est un \mathbb{K} -espace vectoriel.

Le vecteur nul est le n- uplet : 0 = (0, 0,, 0).

Soit *I* une partie de \mathbb{K} et *E* l'ensemble des applications de *I* dans \mathbb{K} .

On munit cet ensemble:

- d'une opération interne notée "+" dite somme des applications : $(f,g) \in E^2 \longmapsto h = f+g$ telle que : $\forall \ x \in I, \ h(x) = (f+g)(x) = f(x) + g(x)$
- d'une opération externe à opérateurs dans \mathbb{K} notée "." : $(a,f) \in \mathbb{K} \times E \longmapsto g = a.f$ telle que : $\forall x \in I, (a.f)(x) = a \times f(x)$.

Alors, $(\mathbb{K}^I, +, .)$ est un \mathbb{K} – espace vectoriel.

Le vecteur nul de cet espace est l'application nulle que l'on notera θ .

 $\boxed{\bf 3}$ L'ensemble des suites $\mathbb{K}^{\mathbb{N}}$ est un $\mathbb{K}-$ espace vectoriel lorsqu'on le munit des opérations :

Loi interne notée "+" : $(u,v) \in \mathbb{K}^{\mathbb{N}} \times \mathbb{K}^{\mathbb{N}} \longmapsto s = u+v \; \text{ telle que } \forall \; n \in \mathbb{N}, \; s_n = u_n + v_n$

Loi externe notée "." : $(a, u) \in \mathbb{K} \times \mathbb{K}^{\mathbb{N}} \longmapsto v = a.u \; \text{ telle que} : \forall \; n \in \mathbb{N}, \; v_n = a \times u_n.$

Le vecteur nul de cet espace est la suite nulle que l'on notera $\theta : n \in \mathbb{N} \longmapsto \theta_n = 0$.

4 Soit *I* un intervalle de \mathbb{R} et *k* un entier naturel.

L'ensemble $C^k(I,\mathbb{R})$ (resp. $C^k(I,\mathbb{C})$) des applications k fois dérivable sur I et dont la k-ième dérivée est continue (applications dites "de classe C^k ") à valeurs dans \mathbb{R} (resp. dans \mathbb{C}) est un \mathbb{R} — espace vectoriel (resp. \mathbb{C} — espace vectoriel), muni des deux opérations définies dans l'ex 2.

De même, $C^{\infty}(I, \mathbb{K})$ est un \mathbb{K} – espace vectoriel.

Ici encore, le vecteur nul est la fonction nulle (notée θ).

Soit $n \in \mathbb{N}^*$. Les ensembles $\mathbb{K}[X]$ et $\mathbb{K}_n[X]$ munis de l'addition des polynômes et de la multiplication d'un polynôme par un scalaire :

$$(a,p) \in \mathbb{K} \times \mathbb{K}[X] \longmapsto q = a.p \text{ tel que, si } p = \sum_{k=0}^{m} \beta_k X^k, \text{ alors } a.p = \sum_{k=0}^{m} (a \times \beta_k) X^k$$
 sont des \mathbb{K} – espaces vectoriels.

Le vecteur nul de ces espaces est le polynôme nul que l'on a noté θ (tous ses coefficients sont nuls).

Thm: Les ensembles suivants, munis de leurs additions respectives et de la multiplication externe par un scalaire, sont des espaces vectoriels: \mathbb{K} ; \mathbb{K}^n , $n \in \mathbb{N}^*$; $\mathbb{K}[X]$; $\mathbb{K}_n[X]$, $n \in \mathbb{N}^*$; \mathbb{K}^A , $A \neq \emptyset$; $\mathbb{K}^\mathbb{N}$; $C^k(I,\mathbb{R})$, I intervalle de \mathbb{R} ; $C^\infty(I,\mathbb{R})$.

 $\underline{\mathrm{Rq}}: (\mathbb{K}[X], +, \cdot_{scalaires})$ est un ev et $(\mathbb{K}[X], +, \times_{polynomes})$ est un anneau : muni de toutes les opérations, $(\mathbb{K}[X], +, \times, .)$ s'appelle une algèbre.

De même
$$(C^k(I,\mathbb{R}),+,\times,.)$$
 et $(\mathbb{K}^A,+,\times,.)$, et... $(\mathbb{K}[X],+,o,.)$, $(C^k(I,\mathbb{R}),+,o,.)$.

 \Longrightarrow **Méthode:** Pour montrer qu'un ensemble E munis d'opérations + et . N'EST PAS un ev, on exhibe un contre exemple : $x, y \in E$ avec $x+y \notin E$, ou bien $x \in E$ et $\lambda \in K$ tels que $\lambda x \notin E$.

Ex 1:
$$F = \{(x, y, z, t) \in \mathbb{R}^4, x + y + z + t \le 1\}$$
; (F,+,.) est-il un ev?

3) Règles de calcul dans un espace vectoriel

- $(1) \qquad \forall \ a \in \mathbb{K}, \ a.0_E = 0_E$
- $(2) \qquad \forall \ x \in E, \ 0.x = 0_E$
- (3) $\forall a \in \mathbb{K}, \ \forall x \in E, \ a.x = 0_E \iff (a = 0 \text{ ou } x = 0_E)$

4) Combinaisons linéaires

Soit (E, +, .) un \mathbb{K} – espace vectoriel.

<u>Définition</u>: Soit $\mathcal{F} = (x_j)_{1 \leq j \leq p}$ une famille finie de vecteurs de E.

On dit qu'un vecteur x de E est combinaison linéaire des vecteurs de la famille \mathcal{F} s'il existe une famille de scalaires $(a_j)_{1 \leqslant j \leqslant p}$ tels que : $x = \sum_{i=1}^p a_j x_j$.

L'ensemble des combinaisons linéaires de la famille \mathcal{F} se note $Vect\left(\left(x_{j}\right)_{1\leqslant j\leqslant p}\right)$ (Déf 1).

Ex 2: Dans $C^{\infty}(\mathbb{R}, \mathbb{R})$, notons $f_n : t \longmapsto f_n(t) = \sin(nt)$ et $\mathcal{F} = (f_n)_{n \in \mathbb{N}^*}$.

Alors une combinaison linéaire de vecteurs de F s'écrira : $h = \sum_{n=1}^{m} a_n f_n$.

Ex 3: E ev et $x \in E$; $\mathcal{F} = \{x\}$

Ex 4: E ev et $x,y \in E$; $\mathcal{F} = \{x,y\}$

II) SOUS-ESPACES VECTORIELS

1) Définition

Soit (E, +, .) un \mathbb{K} -espace vectoriel et F une partie de E.

<u>Définition</u>: On dit que F est un sous-espace vectoriel de E (en abrégé : sev de E) si (F, +, .) est un \mathbb{K} — espace vectoriel.

Autrement dit, la LCI + doit être interne dans $F : \forall x, y \in F, x + y \in F$ (càd que (F, +) est un sous-groupe de (E, +)).

Et le produit par la LCE . de tout scalaire par un vecteur de F, doit être un vecteur de F : $\forall \alpha \in \mathbb{K}$, $\forall x \in F$, $\alpha.x \in F$.

<u>Théorème</u> (pratique) : Soit (E, +, .) un $\mathbb{K}-$ ev et F une partie de E. F est un sev de E ssi :

- $F \neq \emptyset$
- F est stable par combinaisons linéaires, càd : $\forall (x,y) \in F^2, \ \forall (a,b) \in \mathbb{K}^2, \ a.x + b.y \in F$
- \Longrightarrow **Méthode :** Pour montrer qu'une partie F d'un ev E est un sev de E on peut montrer :
- soit que $F \neq \emptyset$ (le plus souvent presque tout le temps on montre que le vecteur nul 0_E appartient à F) et que $\forall (x,y) \in F^2$, $\forall (a,b) \in \mathbb{K}^2$, $a.x + b.y \in F$ (c'est le thm)
 - soit que $F \neq \emptyset$ et que $\forall (x,y) \in F^2$, $x+y \in F$ et que $\forall x \in F$, $\forall \lambda \in \mathbb{K}$, $\lambda . x \in F$ (déf ci-dessus)
 - soit que $F \neq \emptyset$ et que $\forall (x,y) \in F^2$, $\forall \lambda \in \mathbb{K}$, $\lambda . x + y \in F$ (autre thm équ.)
- \implies **Méthode :** Pour montrer qu'un ensemble F muni d'une LCI + et d'une LCE . est un espace vectoriel, on peut montrer que F est un sev d'un ev (bien connu) E.
- Ex 5: L'ensemble des suites convergentes est-il un IK-espace vectoriel (deux méthodes)?

Thm : pour tout ev E, $\{0_E\}$ et E sont des sev de E.

2) Sev engendré par une partie de E

<u>Thm/Déf</u>: Pour toute partie (ou famille de vecteurs) non vide A d'un espace-vectoriel E, Vect(A) est un sev de E.

Si Vect(A)=E on dit que A engendre E

 \implies **Méthode:** Pour démontrer qu'une partie non vide <u>donnée</u> A d'un ev E engendre E (càd E=Vect(A)), on montre que pour tout vecteur $x \in E$, x est égal à une combinaison linéaire de vecteurs de A.

⇒ **Méthode:** Pour <u>trouver</u> une partie/famille génératrice A d'un ev E (càd telle que E=Vect(A)), on trouve une famille de vecteurs telle que tout vecteur de E est une combinaison linéaire de ces vecteurs; la partie génératrice est l'ensemble de ces vecteurs.

Ex 6: Soit $E = \mathbb{R}^3$ et $H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E$, x - y + z = 0 (*) $\right\}$. Montrer que H est un sev de E, et déterminer une famille génératrice de H.

Thm : Si \mathcal{F}_1 , \mathcal{F}_2 sont des familles de vecteurs de E alors :

- $\bullet \ \mathcal{F}_{2} \subset \mathcal{F}_{1} \Longrightarrow \textit{Vect} \ (\mathcal{F}_{2}) \subset \textit{Vect} \ (\mathcal{F}_{1})$
- $\mathcal{F}_2 \subset \textit{Vect}(\mathcal{F}_1) \Longrightarrow \textit{Vect}(\mathcal{F}_2) \subset \textit{Vect}(\mathcal{F}_1)$, « Si les vecteurs de F2 sont des CL des vecteurs de F1, alors les CL de vecteurs de F2 sont des CL de vecteurs de F1 »

Ex 7: Dans $E = \mathbb{R}^3$, soient $u_1 = (1, 1, 0)$, $u_2 = (1, 0, 1)$, $u_3 = (1, 3, -2)$ et $u_4 = (1, 4, -3)$.

Est-il vrai que $Vect(u_1, u_2) = Vect(u_3, u_4)$?

3) Intersections de sevs d'un ev E

Thm : L'intersection de plusieurs sev de E est encore un sev de E :

 $\forall (F_j)_{1 \leqslant j \leqslant p}$ sevs de E, $\bigcap_{j=1}^p F_j$ est un sev de E.

De même pour une famille infinie de sevs : $\bigcap_{j=1}^{+\infty} F_j$ est un sev de E

[Démo:

Rq1 : L'intersection de deux sev n'est jamais vide car elle contient obligatoirement le vecteur nul.

Rq2 : \triangle En général, la réunion de deux sevs de E n'est pas un sev de E..

Contre-exemple : $E=\mathbb{R}^2$, $F_1 = Vect((1,0))$ et $F_2 = Vect((0,1))$

 $\underline{\text{D\'ef 2}}$: Si A est une partie d'un sev E, Vect(A) est l'intersection de tous les sevs contenant A.

Déf 3 : C'est le plus petit (pour l'inclusion) sev de *E* contenant *A*.

[Démo : en TD

4) Somme de sevs de E

Définition : Soient F_1 et F_2 deux sev de E.

On appelle somme des sev F_1 et F_2 l'ensemble : $F_1 + F_2 = \{x_1 + x_2 / x_1 \in F_1 \text{ et } x_2 \in F_2\}$.

De même avec k sevs : $F_1 + F_2 + ... + F_k = \{x_1 + x_2 + ... + x_k / x_1 \in F_1, x_2 \in F_2, ..., x_k \in F_k \}$.

 $\underline{\text{Prop1}: F_1 + F_2 \text{ est un sev de } E \text{ et } F_1 + F_2 = Vect \left(F_1 \cup F_2\right)}$

Démo :

$$\underline{\text{Prop2}}: F_1 \subset F_1 + F_2 \text{ et } F_2 \subset F_1 + F_2.$$

Démo :

 Λ Il n'y a pas unicité de la somme qui conduit à un vecteur de $F_1 + F_2$. Contre-exemple :

Considérons $E = \mathbb{R}^3$, $u_1 = (1, 1, 0)$, $u_2 = (0, 1, 1)$ et $u_3 = (0, 1, 2)$.

Notons alors $F_1 = Vect(u_1, u_2)$ et $F_2 = Vect(u_2, u_3)$, et considérons w = (1, 2, 0).

 $\underline{\wedge}$ On peut avoir F+G=F+H (F, G , H sev d'un ev E) sans avoir G=H. Contre-exemple : E= \mathbb{R}^3 , F=Vect((1;0;0)), G=Vect((0;1;0)) et H=Vect((1;1;0)).

5) Somme directe de sevs de *E*

<u>Déf1</u>: On dit que deux sev F_1 et F_2 de E sont en <u>somme directe</u> ou que la somme $F_1 + F_2$ est directe ssi $F_1 \cap F_2 = \{0_E\}$.

On note dans ce cas : $H = F_1 \oplus F_2$.

<u>∧</u>Déf non généralisable à plus de deux sevs.

Ex 8: Dans $E = \mathbb{R}^3$, montrer que les deux sous-espaces $F = \{u = (x, y, z), x + y + z = 0\}$ et $G = \text{Vect}(1, 1, 1)\}$ sont en somme directe.

Thm (Déf2): La somme $F_1 + F_2$ est directe ssi tout vecteur $w \in F_1 + F_2$ se décompose <u>de manière</u> unique en w = u + v avec $u \in F_1$, $v \in F_2$.

<u>Déf</u>: avec k sevs : la somme $F_1 + F_2 + ... + F_k$ est directe ssi tout vecteur $w \in F_1 + F_2 + ... + F_k$ se décompose de manière unique en $w = u_1 + u_2 + ... + u_k$ avec $\forall i \in [1, n], u_i \in F_i$.

Démo:

⇒ **Méthode:** Pour prouver que deux sevs F, G d'un ev E sont en somme directe on montre :

- soit que $F \cap G = \left\{ \overrightarrow{0} \right\}$
- soit (plus long) que tout vecteur de F+G se décompose de manière unique en une somme d'un vecteur de F et d'un vecteur de G.

 $\underline{\wedge}$ On peut avoir F⊕G=F⊕H (F, G , H sev d'un ev E) sans avoir G=H. Même contre-exemple que pour F+G=F+H avec G \neq H :

Lorsque $E = F_1 \oplus F_2$, on dit que les deux sev F_1 et F_2 sont supplémentaires dans E.

Dans ce cas, tout vecteur de E se décompose de façon unique en la somme d'un vecteur de F_1 et d'un vecteur de F_2 .

<u>Thm</u>: tout sev F d'un ev E admet au moins un supplémentaire dans E (admis).

 \Longrightarrow **Méthode:** Pour montrer que $E = F_1 \oplus F_2$, on peut montrer :

- \bullet soit que tout vecteur de E se décompose de façon unique en la somme d'un vecteur de F_1 et d'un vecteur de F_2 .
- soit que tout vecteur de E se décompose en la somme d'un vecteur de F_1 et d'un vecteur de F_2 ET que $F_1 \cap F_2 = \{0\}$

Ex 9:
$$E = \mathbb{R}^3$$
, $H = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E$, $x - y + z = 0$ (*) $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$; montrer que H et G sont supplémentaires.

III) FAMILLES LIBRES, LIÉES, GÉNÉRATRICES - BASES

1) Familles libres, liées

a) Familles finies:

 $\underline{\underline{\mathrm{D\'ef}}}$: Soit $\mathcal{F} = (x_j)_{1 \leqslant j \leqslant p}$ une famille (ou partie indexée) finie d'un \mathbb{K} -espace vectoriel E .

- \mathcal{F} est <u>libre</u> ssi <u>pour toute</u> famille $(a_j)_{1 \le j \le p}$ de scalaires, $\sum_{j=1}^p a_j x_j = 0_E \Longrightarrow \forall j \in \{1,...,p\}$, $a_j = 0$ (« toute combinaison linéaire nulle de vecteurs de \mathcal{F} a tous ses coefficients nuls »)
- \mathcal{F} est <u>liée</u> ssi elle n'est pas libre, càd ssi <u>il existe au moins une</u> famille $(a_j)_{1 \leqslant j \leqslant p}$ de scalaires <u>non tous nuls</u> tels que $\sum_{j=1}^p a_j x_j = 0_E$ (« il existe une combinaison linéaire nulle de vecteurs de \mathcal{F} dont tous les coefficients ne sont pas nuls »)

 \Longrightarrow **Méthode:** Pour prouver qu'une famille de vecteurs $\mathcal{F}=(x_j)_{1\leqslant j\leqslant p}$ est liée, on cherche UNE combinaison linéaire nulle $\sum_{j=1}^p a_j x_j = 0_E$ aux coefficients $(a_j)_{1\leqslant j\leqslant p}$ NON TOUS nuls.

 \Longrightarrow **Méthode:** Pour prouver qu'une famille de vecteurs $\mathcal{F}=(x_j)_{1\leqslant j\leqslant p}$ est libre, on montre que pour TOUTE combinaison linéaire nulle $\sum_{j=1}^p a_j x_j = 0_E$, alors les coefficients $(a_j)_{1\leqslant j\leqslant p}$ sont TOUS nuls.

Ex 10: Dans
$$\mathbb{R}^3$$
, $\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$ est-elle libre ou liée?

b) Familles infinies:

 $\underline{\underline{\mathrm{D\'ef}}}$: Une famille $\mathcal F$ de vecteurs d'un $\mathbb K$ -ev $\mathbb E$, $\mathcal F$ de cardinal infini, est libre ssi toute famille FINIE de $\mathcal F$ est libre; elle est liée ssi il existe une famille FINIE liée dans $\mathcal F$.

Ex 11: (en TD) Soit $E=\mathscr{C}^0(\mathbb{R},\mathbb{R})$. Montrer que la famille $(x\mapsto e^{kx})_{k\in\mathbb{N}}$ est libre.

c) Propriétés:

Propriétés:

- (i) Toute sous-famille de vecteurs d'une famille libre est libre.
- (ii) Toute famille de vecteurs contenant une famille liée est liée.
- (iii) Une famille qui contient deux vecteurs égaux est liée.
- (iv) Une famille qui contient le vecteur nul est liée.
- (v) Cas d'une famille de deux vecteurs : $\mathcal{F} = (u, v)$ est liée ssi u et v sont colinéaires (càd ssi il existe $k \in \mathbb{R}$ tel que v=ku ou u=kv)
- (vi) Une famille $\mathcal{F}=((x_j)_{j\in I})$ de vecteurs de E est liée si et seulement si l'un au moins des vecteurs de \mathcal{F} est combinaison linéaire des autres.

Démo de (vi):

Thm (ajout d'un vecteur à une famille libre):

Soit $\mathcal{Y} = \{(y_j)_{1 \leq j \leq p}\}$ une famille de **vecteurs libres** d'un \mathbb{K} -espace vectoriel E et $y \in E$.

 $Alors: \mathcal{Y} \cup \{y\} \text{ famille li\'ee} \Longleftrightarrow y \in \text{Vect}(\mathcal{Y}).$

Thm équivalent : $\mathcal{Y} \cup \{y\}$ libre $\iff y \notin \text{Vect}(\mathcal{Y})$

Démo:

2) Familles génératrices, bases

 $\underline{\operatorname{Thm}}$: Une famille $\mathcal{G}=(e_j)_{1\leqslant j\leqslant p}$ est génératrice d'un \mathbb{K} -espace vectoriel E (càd, rappel, Vect(\mathcal{G})=E)

ssi:
$$\forall x \in E, \ \exists (\alpha_j)_{1 \le j \le p} \in \mathbb{K}^p \ \text{tels que } x = \sum_{j=1}^p \alpha_j e_j$$

Prop : Toute sur-famille d'une famille génératrice est génératrice

Déf : Une famille génératrice ET libre est appelée une base de *E*.

$$\underline{\text{Ex 12:}} \quad \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ est une base de } \mathbb{R}^3, \mathcal{G} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \text{ n'est que génératrice.}$$

Ex 13: Soit $E=\mathscr{C}^0(\mathbb{R},\mathbb{R})$. La famille $(x\mapsto e^{kx})_{k\in\mathbb{N}}$ est-elle génératrice de E?

<u>Thm</u>: Une famille $\mathcal{B}=(e_j)_{1\leqslant j\leqslant p}$ est une base d'un \mathbb{K} -espace vectoriel E ssi tout vecteur de E s'écrit de manière unique comme une combinaison linéaire de vecteurs de \mathcal{B} , càd ssi :

$$\forall x \in E, \ \exists ! (\alpha_j)_{1 \le j \le p} \in \mathbb{K}^p \ \text{tels que } x = \sum_{j=1}^p \alpha_j e_j$$

Cette écriture s'appelle la **décomposition** de x dans la base \mathcal{B} ; les $(\alpha_j)_{1 \leqslant j \leqslant p}$ sont les **coordonnées** de x dans la base \mathcal{B} .

[Démo :

⇒ **Méthode:** Pour déterminer les coordonnées d'un vecteur dans une base donnée on écrit le vecteur comme combinaison linéaire des vecteurs de la base.

Ex 14: Soit $E=\mathbb{K}_3[X]$ et $P=1+X+X^2\in\mathbb{K}_3[X]$, quelles sont les coordonnées de P dans la base canonique de E? Quelles sont les coordonnées de P dans la base $\{1;(X-1);(X-1)^2;(X-1)^3\}$?

- \implies **Méthode:** Pour prouver qu'une famille \mathcal{B} est une base de E, on prouve
- soit qu'elle est génératrice et libre
- soit que tout vecteur de E se décompose de manière unique dans la base \mathcal{B} (càd est égal à une unique C.L. de vecteurs de \mathcal{B})

Par la seconde méthode on aura en même temps les coordonnées si elles sont demandées.

Ex 15: Soit $\mathcal{B} = ((1,0,0), (1,1,0), (1,1,1))$, montrer que \mathcal{B} est une base de \mathbb{R}^3 et pour tout vecteur $(x,y,z) \in \mathbb{R}^3$ calculer les coordonnées de (x,y,z) dans \mathcal{B} .

Thm (admis): TOUT EV ADMET UNE BASE

<u>Thm</u>: Une famille \mathcal{B} de cardinal infini est une base d'un \mathbb{K} -ev \mathcal{E} ssi tout vecteur de \mathcal{E} s'écrit de manière unique comme une combinaison linéaire de vecteurs de \mathcal{B} .

Ex 16: Base de $\mathbb{R}^{\mathbb{N}}$:

IV) CAS DE LA DIMENSION FINIE

1) Dimension d'un ev, définition

Déf : Un \mathbb{K} -ev E est dit de **dimension finie** ssi il possède une famille génératrice finie.

Déf/Thm de dimension :

- (i) Si E est un \mathbb{K} -ev de type fini, il admet des bases qui ont toutes le même nombre d'éléments. Ce nombre, qui ne dépend que de \mathbb{K} et de E, est appelé **dimension** de E sur \mathbb{K} et noté $\mathbf{dim}(E)$.
- (ii) Toutes les familles libres sont de cardinal au plus n;
- (iii) toutes les familles génératrices sont de cardinal au moins n.
- ⇒ **Méthode:** Pour déterminer la dimension d'un espace vectoriel E, on cherche une base de E (càd une famille de vecteurs telle que tout vecteur de E peut s'écrire de façon unique comme une combinaison linéaire des vecteurs de la famille).

Ex 17: On définit dans $E = \mathbb{R}^4$ les deux sous-espaces vectoriels : $F_1 = \{(x, y, z, t) \in E, x - y + 2z - 3t = 0\}$ et $F_2 = \{(x, y, z, t) \in E, x + 2y + 3z + 4t = 0\}$.

- **a.** Exhiber des bases et les dimensions de F_1 et de F_2 .
- **b.** Préciser $F_1 \cap F_2$.

Thm : \mathbb{K}^n est de dim n, $\mathbb{K}_n[X]$ de dim n+1, $\mathbb{R}^{\mathbb{N}}$ et $\mathbb{R}^{\mathbb{R}}$ sont de dim infinie.

2) Bases et dimensions : propriétés

Thm des familles de cardinal dim(E) : Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $\mathcal{B} =$

- $(e_i)_{1 \le i \le n}$ une famille finie de n vecteurs de E. Alors, les assertions suivantes sont équivalentes :
- (1) \mathcal{B} est une base de E.
- (2) \mathcal{B} est une famille génératrice de E. (3) \mathcal{B} est une famille libre dans E.

Démo :

⇒ **Méthode:** Dans un ev E de dim n, pour prouver qu'une famille de vecteurs de cardinal n est une base, il suffit de prouver qu'elle est libre, ou qu'elle est génératrice

Ex 18: Dans \mathbb{R}^3 , les vecteurs suivants forment-ils une base? Sinon, décrire le sous-espace vectoriel qu'ils engendrent.

a.
$$v_1 = (1, 1, 1), v_2 = (3, 0, -1)$$
 et $v_3 = (-1, 1, -1)$.

b.
$$v_1 = (1, 2, 3), v_2 = (3, 0, -1)$$
 et $v_3 = (1, 8, 13)$.

c.
$$v_1 = (1, 2, -3), v_2 = (1, 0, -1)$$
 et $v_3 = (1, 10, 11)$.

Théorème de la base incomplète : Soit E un ev de dimension n, $\mathcal{L} = (\ell_i)_{1 \leqslant i \leqslant p}$ une famille libre de E, et $\mathcal{G} = (g_j)_{1 \leqslant j \leqslant q}$, une famille génératrice de E. Alors on peut compléter \mathcal{L} en une base de E en lui ajoutant n-p vecteurs de \mathcal{G} .

[Démo:

 \Longrightarrow **Méthode:** Souvent dans les exercices on dispose d'une famille libre \mathcal{L} , et d'une base évidente ("canonique") \mathcal{BC} ; \mathcal{BC} étant par définition génératrice on peut obtenir une deuxième base en complétant \mathcal{L} par des vecteurs bien choisis de \mathcal{BC} .

Ex 19: On pose $e_1 = (1, 1, 0, 0)$ et $e_2 = (-1, 1, -1, 1)$ compléter la famille $\{e_1, e_2\}$ en une base de \mathbb{R}^4

<u>Corollaire</u>: Dans un ev de dimension finie n, de toute famille génératrice de cardinal p on peut extraire une base de E en lui ôtant p-n vecteurs.

 \implies **Méthode:** Souvent dans les exercices on dispose d'une famille génératrice \mathcal{G} , on en extrait une base en enlevant un par un les vecteurs qui sont C.L. d'autres vecteurs de \mathcal{G} , jusqu'à obtenir une famille libre.

Ex 20: On pose $e_1 = (1,1)$, $e_2 = (-1,1)$, $e_3 = (1,0)$, $e_4 = (1,2)$ réduire (e_1,e_2,e_3,e_4) en une base de \mathbb{R}^2

3) Sevs et dimensions : propriétés

Soit E un ev de dim finie $n \in \mathbb{N}$, et F un sev de E, alors :

Propriétés:

- (i) $\dim(F) \leq n$; $\dim(F) = \dim(E) \operatorname{ssi} F = E$.
- (ii) F possède des supplémentaires dans E.
- (iii) si $E = F \oplus G$, alors $\dim(E) = \dim(F) + \dim(G)$
- (iv) si F, G sevs de E, $\dim(F + G) = \dim(F) + \dim(G) \dim(F \cap G)$ (formule de Grassman)

Démo :

 $\underline{\text{Thm}}$: Soient E ev de dim finie et F, G deux sev de E; si deux des propriétés ci-dessous sont réalisées, alors la troisième l'est aussi, et dans ce cas $E=F\oplus G$

- (i) E=F+G
- (ii) $F \cap G = \{0_E\}$
- $(iii) \dim(F) + \dim(G) = \dim(E)$

Autre caractérisation :

<u>Thm (caractérisation de supplémentaires par les bases)</u> : Soient E ev de dim finie et F, G deux sev de E, alors les trois propriétés suivantes sont équivalentes :

- (i) $E = F \oplus G$
- (ii) il existe une base $\mathcal{B}_F=(f_1,f_2,...,f_q)$ de F et une base $\mathcal{B}_G=(g_1,g_2,...,g_r)$ de G telles que $\mathcal{B}_F\cup\mathcal{B}_G=(f_1,f_2,...,f_q,g_1,g_2,...,g_r)$ est une base de E
- (iii) pour toute base \mathcal{B}_F de F et toute base \mathcal{B}_G de G alors $\mathcal{B}_F \cup \mathcal{B}_G$ est une base de E.

Démo :

Application:

 $\underline{\operatorname{Thm}}$: F et G sont en somme directe ssi il existe une base \mathcal{B}_F de F et une base \mathcal{B}_G de G telles que $\mathcal{B}_F \cup \mathcal{B}_G$ est une base de (F+G).

Démo:

Cas d'une somme de plus de deux sevs :

Thm (caractérisation de supplémentaires par les dimensions) : Soient E espace vectoriel de dim finie et $F_1, F_2, ..., F_k$ k sevs de E; alors $E = E_1 \oplus E_2 \oplus ... \oplus E_k$ ssi $E = E_1 + E_2 + ... + E_k$ et $dim(E) = dim(E_1) + dim(E_2) + ... + dim(E_k)$.

<u>Thm</u> (caractérisation de supplémentaires par les bases) : Soient E ev de dim finie et $F_1, F_2, ..., F_k$ k sevs de E; alors les trois propriétés suivantes sont équivalentes :

- (i) $E = E_1 \oplus E_2 \oplus ... \oplus E_k$
- (ii) il existe des bases \mathcal{B}_1 de F_1 , \mathcal{B}_2 de F_2 , ..., \mathcal{B}_k de F_K telles que $\mathcal{B}_1 \cup \mathcal{B}_2 \cup ... \cup \mathcal{B}_k$ est une base de E
- (iii) pour toutes bases \mathcal{B}_1 de F_1 , \mathcal{B}_2 de F_2 , ..., \mathcal{B}_k de F_K , alors $\mathcal{B}_1 \cup \mathcal{B}_2 \cup ... \cup \mathcal{B}_k$ est une base de E.
- 4) Quelques types de sevs particuliers

Def:

- Un ev de dim 1 est une droite vectorielle
- Un ev de dim 2 est un plan vectoriel.
- ullet Si E est un espace vectoriel de dimension n, tout sous-espace de E de dimension n-1 s'appelle un hyperplan de E.

Ainsi, un sous-espace H de E est un hyperplan de E si et seulement s'il possède une droite vectorielle de E supplémentaire dans E: H hyperplan de $E \iff \exists \ a \in E$, $E = H \oplus \mathbb{K} \ a$

[Démo:

Rq: Définition valable en dimension ∞ .

5) Applications: rang d'une famille de vecteurs

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{F} = \{u_1, ..., u_p\}$ une famille de vecteurs de E.

Def:

On appelle \underline{rang} de la $\underline{famille}$ $\mathcal F$ et on note $rg(\mathcal F)$ la dimension du sous-espace vectoriel $Vect(\mathcal F)$:

$$\text{rg}\left(\mathcal{F}\right) \, = \, \text{dim Vect}\left(\mathcal{F}\right)$$

Prop:

- si dim E = n, rg $(\mathcal{F}) \leqslant n$.
- rg (\mathcal{F}) est le plus grand nombre de vecteurs libres que l'on peut extraire de la famille \mathcal{F} .
- \mathcal{F} est une base de E si et seulement si $rg(\mathcal{F}) = \dim E$.